Autor |
Maria Sueli C. S. Monteiro, tel. (0_ _11) 4169-8565 |
Série |
3ª série do Ensino Fundamental, a partir do segundo semestre |
Tempo necessário |
2 aulas |
Introdução |
É muito comum a multiplicação ser vista como uma adição de parcelas iguais. Realmente, ela possui esse aspecto, mas vista apenas dessa forma como podemos explicar a multiplicação de 0,8 por 2,3? Para que possamos explorar adequadamente a multiplicação, devemos trabalhar desde as séries iniciais com a representação retangular, a proporcionalidade e o raciocínio combinatório. Para a compreensão do algoritmo (seqüência de etapas que, se realizadas adequadamente, resultam no sucesso de uma tarefa) da multiplicação, utilizamos a idéia de parcelas iguais e de representação retangular. Os alunos, muitas vezes, não sentem dificuldade em trabalhar com o algoritmo, mas é interessante que eles compreendam o porquê de algumas passagens. O uso do Material Dourado facilita essas justificativas. |
Objetivos |
Ao final das atividades, alunos deverão ser capazes de |
Recursos didáticos |
Material Dourado e folha sulfite dividida em 3 partes iguais. |
Organização da sala |
Como as escolas geralmente não possuem uma grande quantidade de caixas de Material Dourado, a classe pode estar organizada em grupos de 4 ou 6 alunos com 1 caixa desse material para cada um desses grupos. No entanto, a realização da atividade, para que ocorra maior compreensão, deverá ser feita em duplas. |
Desenvolvimento da atividade/ procedimentos |
A utilização de um material concreto exige organização e planejamento. Veja abaixo algumas providências que você deve tomar pelo menos um dia antes da aula. Organização da classe Dinâmica de trabalho Caso os alunos não conheçam o Material Dourado é melhor começar com as atividades que constam do plano de aula do uso desse material: Material Dourado, muito prazer.
|
Avaliação |
1. É importante verificar que conhecimento os alunos possuem sobre o Sistema de Numeração Decimal, antes de começar as atividades. (veja o item Aprofundamento do Conteúdo) |
Contextualização |
Mostrar aos alunos que existe uma maneira de resolver uma operação, conhecida pela maioria das pessoas e chamada por nós professores de algoritmo. Os algoritmos são formas organizadas de obter o resultado de maneira mais fácil e acessível. Na história da humanidade isso representou um grande avanço, já que os cálculos eram feitos por poucas pessoas que utilizavam ábacos e que detinham o poder de calcular, por exemplo, os impostos.
|
Sugestões para trabalho interdisciplinar |
Por ser um assunto específico da própria ciência matemática, não existem relações com outras áreas de conhecimento que possam ser trabalhadas com alunos dessas séries. Algumas atividades que podem ser feitas são ligadas à história da Matemática que é a própria história da humanidade. É possível também pesquisar como as pessoas da comunidade resolvem suas contas de multiplicação e discutir essas formas de resolução em sala de aula .
|
Aprofundamento de conteúdo |
IDÉIAS DA MULTIPLICAÇÃO Adição de parcelas iguais Conforme já dissemos na introdução, é comum trabalharmos a multiplicação como adição de parcelas iguais. Esta idéia não nos auxilia no cálculo de multiplicação de frações: ou de decimais 0,4 x 3,8. Uma outra idéia muito trabalhada que também traz problemas é que o resultado de uma multiplicação é maior que os valores multiplicados. Isto de fato ocorre quando os números são naturais, mas quando multiplicamos frações ou decimais nem sempre isso ocorre. Isso não significa que não devemos tratar a multiplicação como adição de parcelas iguais, mas não apenas sob esse aspecto. Veja que na situação abaixo a idéia de adição de parcelas iguais não está presente, mas a operação que a resolve é a multiplicação. Representação Retangular Vimos na atividade 1 da 3ª aula como qualquer multiplicação representada no quadriculado forma um retângulo. Pode ser que algum aluno fique surpreso com o fato de que todo quadrado é um retângulo, isto é, que a representação de 4x4, por exemplo, seja um retângulo. Explique ao aluno que para ser um retângulo é necessário ser um quadrilátero com 4 ângulos retos e como o quadrado, além de ter 4 lados iguais também tem 4 ângulos retos, então é um retângulo. A representação retangular além de auxiliar a construção da tabuada prepara o aluno para entender a área de figuras planas. Raciocínio Combinatório Vou viajar mas não gostaria de levar muita roupa. Se levar 3 blusas e 2 saias, quantos dias poderei usar essas roupas sem repetir a mesma saia com a mesma blusa? Observe que para obter a resposta basta multiplicarmos 2 x 3 (Princípio multiplicativo: assunto tratado por muitos professores apenas no ensino médio). O interessante, neste tipo de situação, é proporcionar aos alunos material concreto, como blusas e saias diferentes em quantidade suficiente, para que possam organizar todas as possibilidades e a partir da resolução de vários problemas desse tipo observar a operação que os resolvem. A representação dessa situação deve ser feita também em tabela de dupla entrada. Proporcionalidade Uma das idéias mais importantes na Matemática é a proporcionalidade, que também é muito utilizada em outras ciências: Física, Química, por exemplo.
A multiplicação nas séries iniciais É interessante trabalhar a multiplicação sempre em situações-problema para que os alunos tenham a oportunidade de reconhecer o uso dessa operação em diferentes situações. A construção dos fatos fundamentais (tabuada) pode ser feita com o material Cuisenaire (veja as aulas desse material), o papel quadriculado, ábaco, cartaz de pregas, etc.. Esperamos que os nossos alunos, com o tempo, memorizem a tabuada, mas como conseqüência de um entendimento do que ela significa e com a sua utilização em atividades diversificadas, por isso falamos sempre em construção da tabuada. A multiplicação nas 3ª e 4ª séries È importante trabalhar, nessas séries, também as propriedades da multiplicação, utilizando materiais e papel quadriculado. Algoritmo tradicional A folha sulfite deverá ser dividida em 3 partes e em cada parte os alunos deverão escrever (unidade, dezena e centena) e desenhar as peças em suas respectivas partes.
Os quadros abaixo deverão ser copiados pelos alunos para que possam resolver o algoritmo no papel. Este quadro deve ser utilizado nas multiplicações por unidades
Vamos examinar um pouco mais as atividades.
Observe outra maneira de representar:
1 x 1 = 1 unidade = 1 cubinho
|
Visite meu blog

Visualização do Blog
702611
Quem sou eu

- Professor Nerci Valter Amaral
- Rondonopolis, MATO GROSSO, Brazil
- O mar para atravessar, o Universo para descobrir, as pirâmides para medir. Tudo existia menos a trigonometria. Construíram-se triângulos, mediram-se ângulos, fizeram-se cálculos e quem sonharia que à Lua se iria? Flor, fruto... Sucessão da natureza. Dois, quatro... Sucessão de Matemática. Quem gosta de Matemática tem de gostar da Natureza. Quem gosta da Natureza aprenderá a gostar da Matemática. O chá arrefece com o tempo, as plantas florescem com o tempo, a Matemática aprende-se com o tempo, a vida vive-se com o tempo. O que é que não é função do tempo? Eram formas tão perfeitas, que na Matemática já tinham uma equação. A sua beleza e harmonia levaram-nos do plano para o espaço e também ao nosso dia-a-dia. Quanto tempo gastou Arquimedes para desenhar retângulos cada vez de menor base, até chegar à área de uma curva? Arquimedes, Arquimedes, que paciência a tua. mas mostraste ao mundo que a Matemática ensina não a dizer: não sei mas a dizer: ainda não sei. Trigonometria, Álgebra e Geometria, tudo junto para complicar. Mas as relações são tão interessantes que até dá gosto estudar. Matemática para que serves? Para dar força e auto-confiança.
Pesquisas Educacionais
segunda-feira, 6 de dezembro de 2010
Multiplicação com Material Dourado
Assinar:
Postar comentários (Atom)
como respondo a resposta??????????????
ResponderExcluirExcelente! Muito obrigada!
ResponderExcluirExcelente! Muito obrigada!
ResponderExcluirvaleu..
ResponderExcluir